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1. EXTERIOR MEASURE ON THE LINE

I Exterior measure. For A ⊆ R, define its external measure

m∗(A) = inf

{ ∞∑
n=1

|In| : each In is an interval and
⋃
n

In ⊇ A

}
.

where |I| is the length of the interval I (i.e., b− a if I = [a, b]).

I Basic properties of exterior measure.

(1) 0 ≤ m∗(A) ≤ ∞ for all A ⊆ R.

(2) m∗(A) ≤ m∗(B) whenever A ⊆ B. This is called monotonicity.

(3) m∗(∪nAn) ≤
∑

nm∗(An). This is called countable subadditivity.

Sketch of proof: Only the last one is non-trivial. To prove it, find a cover for An by intervals In,1, In,2, . . .

whose lengths sum up to less than m∗(An) + 2−nε. The entire collection {In,j} gives a cover for ∪nAn by

intervals and hence m∗(∪nAn) ≤
∑

n

∑
k |In,k| ≤ (

∑
m∗(An)) + ε.

I Fact: There exist sets A,B such that A ∩B = ∅, A ∪B = [0, 1] and m∗(A) = m∗(B) = 1.

I Further properties of exterior measure.

(1) m∗(I) = |I| for any interval I .

(2) If A,B are disjoint and there is a δ > 0 such that |x − y| ≥ δ for all x ∈ A and y ∈ B, then
m∗(A ∪B) = m∗(A) +m∗(B).

(3) m∗(A) = inf{m∗(G) : G ⊇ A and G is open}.

(4) m∗(A + x) = m∗(A) for A ⊆ R and any x ∈ R. m∗(rA) = rm∗(A) for A ⊆ R and r > 0.
Here, A+ x = {a+ x : a ∈ A} and rA = {ra : a ∈ A}.

0These are notes for a mini-course on Lebesgue measure and Lebesgue integral, given as part of an NCM Instruc-

tional School for Teachers on Analysis and PDE, organized at IISc, Bangalore by T. Gudi and R. Venkatesh during the

period May 6-18, 2019. The course consisted of six lectures of 90 minutes duration each, together with six tutorials

of one hour each. These notes celebrate the unprecedented event of my covering all the material that I was asked to.
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2. LEBESGUE MEASURE

I Define the Lebesgue sigma algebra

L = {A ⊆ R : m∗(A ∩ E) +m∗(A
c ∩ E) = m∗(E) for all E ⊆ R} .

Elements of L are called measurable sets. For measurable sets, we denote m∗(A) by m(A). Thus
m is a mapping from L into [0,∞]. It is called Lebesgue measure.

I L is closed under complements and countable unions. Further, all intervals are in L, and
hence also all open sets and closed sets. Any set with zero exterior measure is in L.

I Lebesgue measure is countably additive on L. That is, if A1, A2, . . . are in L and pairwise
disjoint, then m(A1 ∪A2 ∪ . . .) = m(A1) +m(A2) + . . ..

3. MEASURABLE FUNCTIONS

I A function f : R 7→ R := R ∪ {−∞} ∪ {+∞} is said to be measurable if the set {x : f(x) < t}
(we shall also write {f < t} to denote this set) is a measurable set for any t ∈ R.

I More generally, write f−1(B) for {f ∈ A} (which is the same as {x ∈ R : f(x) ∈ A} for the
inverse image of B ⊆ R. Then f−1(Bc) = (f−1(B))c and f−1(∪αBα) = ∪αf−1(Bα) (note that this
may even be an uncountable union).

I If f is a measurable function, then {f ≤ t}, {f ≥ t}, {f > t}, f−1(I) (where I is an interval)
are all measurable sets.

I Continuous functions are measurable.

I If f, g are measurable, then so are f+g, fg, max{f, g}, min{f, g}. It is easiest to deduce these
from the following more general fact: Let ϕ : Rd 7→ R be a continuous function. Let f1, . . . , fd :

R 7→ R be measurable functions. Then ϕ(f1, . . . , fd) : R 7→ R is a measurable function.

I Let fn, n = 1, 2, . . ., be measurable functions. Then so are sup
n
fn, inf

n
fn, lim sup

n→∞
fn and

lim inf
n→∞

fn.

4. LEBESGUE INTEGRAL

I A simple function is a function of the form f = α1χA1 + . . .+αnχAn where α1, . . . , αn are real
numbers and A1, . . . , An are measurable sets (and n is any positive integer). Basically these are
functions whose range is a finite set. Note that the same simple function can be written in several
ways, eg., χA + χB = χA∪B if A and B are disjoint. If one needs a canonical representation, one
can insist on distinctness of αis and pairwise disjointness of Ais.

2



I Step-1 For a simple function f = α1χA1 + . . . + αnχAn , we associate a number that we
temporarily denote by L1(f) and defined by

L1(f) = α1m(A1) + . . .+ αnm(An).

Justification is needed that this is a proper definition, since there may be multiple ways to write f
in the form above.

I Check that on the vector space of simple functions, L1 is linear and positive. This means
(1) L1(f + g) = L1(f) + L1(g) and L1(αf) = αL1(f) for α ∈ R, (2) L1(f) ≥ 0 if f is a non-negative
simple function. As a corollary, if f ≤ g are both simple, then L1(f) ≤ L1(g) (monotonicity). These
are fairly easy.

I Step-2 Let f be any non-negative measurable function. Define its integral as

L2(f) = sup{L1(s) : s is a non-negative simple function and 0 ≤ s ≤ f}.

By the monotonicity of L1 on simple functions, it is easy to check that if f is itself a non-negative
simple function, then L2(f) = L1(f). Thus, L2 is an extension of L1 to a larger class of functions.

I Check that if f, g are non-negative measurable functions, then (1) L2(f +g) = L2(f)+L2(g),
(2) L2(αf) = αL2(f) for α > 0, (3) L2(f) ≥ 0. As before, it follows that if 0 ≤ f ≤ g are both
measurable, then L2(f) ≤ L2(g) (monotonicity). Observe that non-negative measurable functions
don’t form a vector space, hence the restriction to α > 0 in the second claim.

The second and third statements are trivial. The first one is the most non-trivial point in the entire
construction and we explain it a little.

I Given a non-negative measurable function f , there exist simple functions sn such that sn(x)
increases to f(x) for all x ∈ R.

Proof: Divide [0,∞) into intervals [0, 2−n), [2−n, 2.2−n), . . . ,[n − 2−n, n), and [n,∞). If f(x) belongs to

[k2−n, (k + 1)2−n), define fn(x) to be k2−n. If f(x) ≥ n, define fn(x) = n. Then fn(x) is an increasing

sequence (for this it is important that we chose the small intervals to have length 2−n. it would not work if

we chose them to have length 1/n, for example) and converges to f(x). This gives the existence of sns.

I If 0 ≤ s1 ≤ s2 ≤ . . . are simple functions and sn(x)→ f(x) for all x ∈ R, then L1(sn) ↑ L2(f).
Proof: By monotonicity, L1(sn) increases to some ` ≤ +∞. Also, L1(sn) ≤ L(f) since sn ≤ f , hence

` ≤ L2(f). To show the other way inequality, let 0 ≤ t ≤ f be any simple function and let 0 < c < 1 be

any number. Write t = α1χA1 + . . . + αkχAk
with disjoint Aks. Let Bn,j := Aj ∩ {sn ≥ cαj} ↑ Aj for each

j ≤ k. Then sn ≥ cα1χBn,1
+ . . . + cαkχBn,k

which shows that L1(sn) ≥ cα1m(Bn,1) + . . . + ckαkm(Bn,k).

As sn ↑ f , it is easy to see that Bn,j ↑ Aj and hence m(Bn,j) ↑ m(Aj). This shows that limL1(sn) ≥ cL2(t).

Take c→ 1 and then supremum over all t to get ` ≥ L2(f).

I Step-3 Let f be any measurable function. Let f+ = max{f, 0} and f− = max{−f, 0}. Then
f+, f− are non-negative measurable functions and f = f+ − f−. If it so happens that L2(f+) and
L2(f−) (defined in step-2) are finite, then say that f is integrable and set L3(f) = L2(f+)−L2(f−).
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If only one of L2(f+) and L2(f−) is equal to +∞ and the other is finite, then we do not say that
f is integrable, although it is convenient to define L3(f) as ±∞ (depending on which of them is
infinite).

I Prove that integrable functions form a vector space and that L3 is linear and positive on this
vector space. That is (1) L3(f + g) = L3(f) + L3(g), (2) L3(αf) = αL3(f) for α ∈ R, (3) L3(f) ≥ 0.

Proofs: Again the second and third claims are obvious. To show the first one, observe that f + g can

be written as (f + g)+ − (f + g)− and also as (f+ − f−) + (g+ − g−). Equating the two and rearranging,

we see that (f + g)+ + f− + g− = (f + g)− + f+ + g+. All these are non-negative measurable functions.

Using additivity of L2, it follows that L2((f + g)+) + L2(f−) + L2(g−) = L2((f + g)−) + L2(f+) + L2(g+).

Rearranging again, we see that L3(f + g) = L3(f) + L3(g).

I Henceforth, write
∫
R f(x)dm(x) or

∫
fdm in short for L3(f). To integrate on subsets of R,

we write
∫
A fdm to mean

∫
R fχAdm.

I If f is an integrable function and g is another function such that m{f 6= g} = 0. Then g is
also measurable and integrable and

∫
fdm =

∫
gdm. That is, Lebesgue integral is insensitive to

changes of values on sets of zero measure. In particular, if f ≥ 0 and
∫
fdm = 0, then it is not

necessary that f = 0. We can only say that f = 0 a.e. (read as f is equal to zero almost everywhere
and meaning that m{f 6= 0} = 0).

I Since ±∞ are allowed values of measurable functions, adding functions can be problematic
if there exists points for which we get∞−∞ which is undefined. However, observe that if f is
an integrable function, then −∞ < f < +∞ a.e., hence by changing f on a set of zero measure,
we can make it finite-valued. When adding two integrable functions, the ambiguity of∞−∞ can
occur at most on a set of zero measure, and if we ignore that set (or set the sum to be 0, say), then
the sum is well-defined. More about this a.e. business later.

I We summarize the main properties of the Lebesgue integral. It is linear and positive. Fur-
ther, for any integrable function |

∫
f dm| ≤

∫
|f | dm (since the left side is the difference of two

non-negative numbers
∫
f+ dm and

∫
f− dm while the right side is the sum of the same numbers).

5. RIEMANN AND LEBESGUE INTEGRALS

I A function can fail to be integrable either because it is too big or because the the local struc-
ture of the function is bad. For example, if we go back to Riemann integral on [0, 1], the function
1/x fails to be integrable for the first reason, while the function χQ (one on rationals, zero on irra-
tionals) fails to be integrable for the second reason (upper Riemann sums are always 1 and lower
Riemann sums are always 0). The first difficulty is not surprising, hence let us assume in this
section that all our functions are bounded function on [0, 1].

I (Vitali-Lebesgue): A bounded function on [0, 1] is Riemann integrable if and only if the set
of discontinuity points of f has zero Lebesgue measure.
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I From the construction of Lebesgue integral, it is clear that all bounded measurable functions
are integrable in the Lebesgue sense.

I Check that if f is continuous a.e., then it is measurable. Hence, Riemann integrable func-
tions form a subset of Lebesgue integrable functions. Further, where both are defined, they agree.
Therefore, Lebesgue integral is strictly better.

I In some books one finds examples of functions that are not Lebesgue integrable but do have
an improper Riemann integral (eg., sinx

x ). But these are not absolutely integrable.

6. CONVERGENCE THEOREMS FOR LEBESGUE INTEGRAL

I To appreciate this section, go back and look at the clumsy theorems about exchanging limits
and integrals in Riemann integration. But never use them because now you have better theorems!

I Monotone convergence theorem Let 0 ≤ f1 ≤ f2 ≤ . . . be a increasing sequence of measur-
able functions and let fn ↑ f (then f is measurable of course). Then

∫
fndm ↑

∫
fdm.

Proof: That
∫
fndm is increasing in n and bounded above by

∫
fdm is clear. To show the other way

inequality, it suffices to produce non-negative simple functions tn that increase to f and such that tn ≤ fn

(because then
∫
fndm ≥

∫
tndm and the latter increases to

∫
fdm by the preliminary version of MCT that

we proved earlier). To produce such a sequence of tns, pick non-negative simple functions sn,k that increase

to fn as k → ∞ and define tk = max{s1,k, . . . , sk,k} It is clear that tks increase. Further, for any n we see

that tk ≥ sn,k for n ≥ k. Hence lim tk ≥ fn. As this holds for all n, we see that tk ↑ f .

I Fatou’s lemma Let fn be non-negative measurable functions. Then
∫
(lim infn→∞ fn)dm ≤

lim inf(
∫
fndm).

Proof: Let gn = inf
k:k≥n

fk and g = lim inf fn. Then gk ↑ g and since all are non-negative, by MCT it

follows that
∫
gdm = lim

∫
gndm. But gn ≤ fn and hence

∫
gndm ≤

∫
fndm which implies that

∫
gdm ≤

lim inf
∫
fndm.

I Dominated convergence theorem Let fn be measurable functions such that fn → f point-
wise. If there is a integrable function g that dominates fns (i.e., |fn| ≤ g for all n), then

∫
fndm →∫

fdm. In fact
∫
|fn − f |dm→ 0.

Proof: As −g ≤ fn ≤ g, the functions g − fn and g + fn are non-negative. They converge to g − f and

g + f respectively. By Fatou’s lemma, it follows that
∫
(g ± f)dm ≤ lim inf

∫
(g − fn)dm. As g is integrable

and dominates fns (and hence dominates f ), we see that fn, f are also integrable. Hence the integrals can

be separated and we get∫
gdm+

∫
fdm ≤

∫
gdm+ lim inf

∫
fndm,

∫
gdm−

∫
fdm ≤

∫
gdm− lim sup

∫
fndm.

Cancelling the
∫
gdm terms, we get lim sup

∫
fndm ≤

∫
fdm ≤ lim inf

∫
fndm, from which the first result

follows.

Now apply the same result to |fn−f | in place of fn and 0 in place of f . As these functions are dominated

by 2g, it follows that
∫
|fn − f |dm→ 0.
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7. ALMOST EVERYWHERE

I We saw that if f ≥ 0 is a measurable function, then
∫
fdm = 0 if and only if f = 0 a.e.

(meaning m{f 6= 0} = 0). This is in contrast to integrals of continuous functions where the
conclusion would have been that f = 0 identically. As a consequence, if f is an integrable function
and we get g by changing f on a set of zero measure (i.e., m{g 6= f} = 0), then

∫
gdm is the same

as
∫
fdm. In fact,

∫
|f − g|dm = 0.

I The moral is that in measure theory the value of a function at a point is not so meaningful.
Functions have only some sort of a global meaning (in contrast to continuous functions, where
neighbouring values fix the value at a point). This is made more precise by defining a relationship
f ∼ g if f = g a.e. (i.e., m{f 6= g} = 0). Check that this is indeed an equivalence relation. All
functions in one equivalence class are thought of as essentially the same function.

For later purposes, let us be more precise. LetM denote the set of all measurable functions on
R that take finite values except on a set of zero measure. That is,

M = {f : R 7→ R : f is measurable and −∞ < f < +∞ a.e.}.

Say that f, g ∈ M are equivalent if f = g a.e. Check that this is an equivalence relation. LetM0

denote the collection of all equivalence classes. Check thatM0 has a vector space structure under
addition and scalar multiplication. For example, to define the sum of two equivalence classes,
we take a representative function from each, sum the functions, and take the equivalence class
containing the sum, etc. In doing this, the problem of ∞ − ∞ occurs at most on a set of zero
measure, and we may choose to define it any way, for example, let ∞ − ∞ = 0 (note that the
equivalence class of the resulting function does not change).

I Measure zero sets need not be small in other senses. For example, the Cantor set is uncount-
able but has zero measure.

8. p-NORMS

I Consider R2, a two dimensional real vector space. For p > 0, define ‖x‖p := (|x1|p + |x2|p)
1
p

for x = (x1, x2) ∈ R2. Then ‖αx‖p = |α|‖x‖p (homogeneity) and ‖x‖p ≥ 0 with equality if and
only if x = 0 (positivity). What remains to make it a norm is the triangle inequality ‖x + y‖p ≤
‖x‖p + ‖y‖p for all x, y ∈ R2. This is true for 1 ≤ p <∞ but fails for 0 < p < 1. Thus, we have the
norms ‖ · ‖p for 1 ≤ p <∞.

I It is an elementary exercise to show that ‖x‖p → max{|x1|, |x2|} as p → ∞, for any x ∈ R2.
This suggests defining ‖x‖∞ := max{|x1|, |x2|}. Check that ‖cdot‖∞ is also a norm.

I Of all the norms ‖ · ‖p, 1 ≤ p ≤ ∞ on R2, the most special one is ‖ · ‖2. This is because this
norm comes from an inner product. More precisely, if we consider define 〈x, y〉 = x1y1 + x2y2,
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then this is an inner product and it induces the norm 〈x, x〉 = ‖x‖2. It is a good exercise to show
that ‖ · ‖p does not come from an inner product, for any p 6= 2.

I The dual space of R2 is isomorphic to R2 itself, by identifying the linear functional x 7→
ax1 + bx2 with the vector (a, b). Given a norm ‖ · ‖ on R2, we define its dual norm as ‖(a, b)‖∗ :=
max{|ax1 + bx2| : ‖x‖ = 1}. It is not hard to show that the dual norm of ‖ · ‖p (for 1 ≤ p ≤ ∞) is
‖ · ‖q where q is related to p by 1

p +
1
q = 1.

I Given a vector space with a norm, it becomes a metric space with the distance between x

and y defined as ‖x− y‖.

I All this is to motivate the definition of Lp spaces in terms of Lebesgue integral. The defi-
nition can also be made with Riemann integral, for example, consider the space of all Riemann
integrable functions on R. The problem with this space is that it is not complete. When we go to
Lebesgue integrable functions, we get a complete space. This may be taken as one of the purposes
of developing Lebesgue integration theory.

9. LEBESGUE SPACES

I Consider the space of all integrable functions on R. We have seen that it forms a vector
space. If we try to define a norm on this space by setting ‖f‖ :=

∫
R |f |dm, then it does satisfy

homogeneity (‖αf‖ = |α|‖f‖) and triangle inequality (‖f + g‖ ≤ ‖f‖ + ‖g‖). It is also true that
‖f‖ ≥ 0, but it is not true that ‖f‖ = 0 implies that f = 0. Hence it is not a norm.

I To overcome this problem, considerM0, the collection of equivalence classes of measurable
functions defined above. Observe that if one function in an equivalence class is integrable, so are
all other functions, and their integrals are the same. Thus, we can define the space

L1 = {[f ] : f is integrable }

and a norm ‖[f ]‖1 =
∫
R |f |dm. All this is well-defined (i.e., independent of the representative

chosen) and the norm is a genuine norm.

I More generally, for any p > 0, we define the space

Lp = {[f ] : |f |p is integrable }

and write ‖[f ]‖p =
(∫

R |f |
p dm

)1/p. We also define

L∞ = {[f ] : |f | is bounded }

with ‖[f ]‖∞ defined as the essential supremum of |f |, defined as the infimum of all t > 0 such
that m{|f | > t} = 0. A key point about these norms is that if f ∼ g, then f and g have the same
norm (in fact ‖f − g‖ = 0). Hence, when we move to equivalence classes (which is the same as
quotienting by the subspace of functions that are zero a.e.), they define norms on the reduced
space.
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I Theorem For 1 ≤ p ≤ ∞, the space Lp is a vector space and ‖ · ‖p is a norm on it. Further, Lp

is complete in the metric induced by the norm.

I This theorem is a fundamental theorem in analysis. Note that we could have consider the
space of all Riemann integrable functions. That would be a vector space, and f 7→

∫
|f | would

have been a norm on it (some equivalence would have to be defined first). However, it would not
have been complete. The above theorem assures us that with Lebesgue integral “all the holes are
filled”, and there is no need for any further integral.

I The proof of the above theorem needs some work. Even the fact that ‖ · ‖p is a norm is not
obvious. It is easy to see in the three most important cases of p = 1, 2,∞.

I Proof of completeness of L1: Given a Cauchy sequence in L1, take representatives fn in
the equivalence classes. The Cauchy property implies that ‖fn − fm‖1 → 0 as m,n → ∞. Hence
we may find n1 < n2 < n3 < . . . such that ‖fn − fm‖1 ≤ 2k if n,m ≥ nk. We shall show that
fnj converges a.e. to a function f and then argue that this convergence is also in L1 metric (i.e.,
‖fnk

− f‖1 → 0 as k → ∞). Then it follows that fn converges to f in L1 metric (the reason is that
if a Cauchy sequence in a metric space has a convergent subsequence, then the whole sequence
converges). Then [fn]→ [f ] in L1, showing the completeness.

To show that the sequence hj = fnj converges, write hk = h1 + (h2 − h1) + . . . + (hk − hk−1).
The limit, if it exists, should be the corresponding infinite series, but we should first make sure
that the series makes sense. Hence, we define

g = |h1|+
∞∑
k=1

|hk+1 − hk| = |h1|+ lim
m→∞

m∑
k=1

|hk+1 − hk|.

This is well-defined, although the value could be +∞ at some x. However, by MCT,
∫
g dm =∫

|h1|dm +
∑∞

k=1

∫
|hk+1 − hk|dm, which is finite since the kth terms is at most 2−k (by choice of

nk). Thus, g is integrable, and hence g <∞ a.e. Therefore, we may define

f(x) =

h1(x) +
∑∞

k=1(hk+1(x)− hk(x)) if g(x) <∞

0 if g(x) =∞.
.

When g(x) < ∞, the series converges absolutely and hence f(x) has a well-defined finite value.
But of course, this means that hk → f a.e. (since the partial sums are just hk). We claim that this
convergence is also in L1. Indeed,∫

|f − hm|dm =

∫ ∣∣ ∞∑
k=m

(hk+1 − hk)
∣∣ dm ≤ ∞∑

k=m

2k = 2−m+1.

Thus ‖f − hm‖1 → 0, completing the proof.
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