A SHORT COURSE ON LEBESGUE MEASURE AND LEBESGUE INTEGRAL

LECTURES BY MANJUNATH KRISHNAPUR
TUTORIALS BY LAKSHMI PRIYA M. E. AND SUBHAJIT GHOSH

1. EXTERIOR MEASURE ON THE LINE

» Exterior measure. For A C R, define its external measure

my(A) = inf {Z |I,| : each I, is an interval and UI” 2 A} .

n=1 n

where |I] is the length of the interval I (i.e., b — a if I = [a, b)).

» Basic properties of exterior measure.
(1) 0 <my(A) <ooforall A CR.
(2) ms«(A) < m,(B) whenever A C B. This is called monotonicity.
(3) my(UnAy) <>, my(Ay). This is called countable subadditivity.

Sketch of proof: Only the last one is non-trivial. To prove it, find a cover for A,, by intervals I,, 1,1, 2, ...
whose lengths sum up to less than m, (A,) + 27 "e. The entire collection {1, ;} gives a cover for U, A, by
intervals and hence m, (U, A,) < >, >0 [Tn k] < (- ma(An)) + e

» Fact: There exist sets A, Bsuchthat AN B =0, AU B = [0,1] and m.(A) = m4«(B) = 1.

» Further properties of exterior measure.
(1) my(I) = |I| for any interval 1.

(2) If A, B are disjoint and there is a § > 0 such that |zt —y| > d forall z € A and y € B, then
m«(AU B) = my(A) + my(B).

(3) ms(A) = inf{m.(G) : G O Aand G is open}.

4) my(A+ x) = my(A) for A C Rand any = € R. m,(r4) = rm,(A) for A C Rand r > 0.
Here, A+t x={a+z:a€ A}andrA = {ra:a € A}.

These are notes for a mini-course on Lebesgue measure and Lebesgue integral, given as part of an NCM Instruc-
tional School for Teachers on Analysis and PDE, organized at IISc, Bangalore by T. Gudi and R. Venkatesh during the
period May 6-18, 2019. The course consisted of six lectures of 90 minutes duration each, together with six tutorials
of one hour each. These notes celebrate the unprecedented event of my covering all the material that I was asked to.

References: Stein and Shakarchi’s Real analysis and Royden’s Real analysis.
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2. LEBESGUE MEASURE

» Define the Lebesgue sigma algebra
L={ACR:m(ANE)+m(A°NE)=mi(F)forall E CR}.

Elements of £ are called measurable sets. For measurable sets, we denote m.(A) by m(A). Thus

m is a mapping from £ into [0, oo]. It is called Lebesgue measure.

» L is closed under complements and countable unions. Further, all intervals are in £, and

hence also all open sets and closed sets. Any set with zero exterior measure is in L.
» Lebesgue measure is countably additive on £. That is, if A;, As,... are in £ and pairwise
diSjOiI'lt, then m(A1 UAs U.. ) = m(Al) + m(AQ) + ...
3. MEASURABLE FUNCTIONS
» A function f: R+ R := RU{—o00} U {400} is said to be measurable if the set {x : f(z) < t}
(we shall also write { f < ¢} to denote this set) is a measurable set for any ¢ € R.

» More generally, write f~!(B) for {f € A} (which is the same as {z € R: f(z) € A} for the
inverse image of B C R. Then f~1(B¢) = (f~}(B))¢and f1(UyBa) = Uaf }(Ba) (note that this

may even be an uncountable union).

» If f is a measurable function, then {f < t}, {f > t}, {f > t}, f~1(I) (where I is an interval)

are all measurable sets.
» Continuous functions are measurable.

» If f, g are measurable, then so are f + g, fg, max{f, g}, min{f, g}. Itis easiest to deduce these
from the following more general fact: Let ¢ : R? R be a continuous function. Let fi, ..., fq :

R — R be measurable functions. Then ¢(fi, ..., fq) : R — R is a measurable function.

» Let f,, n = 1,2,..., be measurable functions. Then so are sup f,, inf f,, limsup f, and
n

n n—o0
liminf f,.
n—oo
4. LEBESGUE INTEGRAL
» A simple function is a function of the form f = oy x4, +. ..+ anxa, where o, ..., o, are real
numbers and Ay, ..., A, are measurable sets (and n is any positive integer). Basically these are

functions whose range is a finite set. Note that the same simple function can be written in several
ways, eg., XA + xB = x4uB if A and B are disjoint. If one needs a canonical representation, one

can insist on distinctness of «;s and pairwise disjointness of A;s.
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» Step-1 For a simple function f = aixa, + ... + apXxa,, we associate a number that we

temporarily denote by L;(f) and defined by
Ll(f) = alm(Al) +...+ anm(An)

Justification is needed that this is a proper definition, since there may be multiple ways to write f

in the form above.

» Check that on the vector space of simple functions, L; is linear and positive. This means
(1) Li(f+9) = Li(f) + Li1(g9) and Ly (af) = aLi(f) for a € R, (2) L1(f) > 01if f is a non-negative
simple function. As a corollary, if f < g are both simple, then L(f) < Li(g) (monotonicity). These
are fairly easy.

» Step-2 Let f be any non-negative measurable function. Define its integral as
Ly(f) = sup{Li(s) : sis a non-negative simple functionand 0 < s < f}.

By the monotonicity of L; on simple functions, it is easy to check that if f is itself a non-negative

simple function, then Lo(f) = L1(f). Thus, L is an extension of L, to a larger class of functions.

» Check thatif f, g are non-negative measurable functions, then (1) La(f +g) = La(f) + L2(g),
(2) La(af) = aLa(f) for a > 0, (3) La(f) > 0. As before, it follows that if 0 < f < g are both
measurable, then Ly(f) < La(g) (monotonicity). Observe that non-negative measurable functions
don’t form a vector space, hence the restriction to o > 0 in the second claim.

The second and third statements are trivial. The first one is the most non-trivial point in the entire

construction and we explain it a little.

» Given a non-negative measurable function f, there exist simple functions s,, such that s, (z)
increases to f(x) for all z € R.

Proof: Divide [0, c0) into intervals [0,27™), [277,2.27"), ...,[n — 27™,n), and [n,00). If f(z) belongs to
k27", (k + 1)27 "), define f,(x) to be k27", If f(z) > n, define f,(z) = n. Then f,(z) is an increasing
sequence (for this it is important that we chose the small intervals to have length 27". it would not work if

we chose them to have length 1/n, for example) and converges to f(z). This gives the existence of s,s.

» If0 <s; < sy <...aresimple functions and s, (z) — f(x) forallz € R, then Ly(s,) T La(f).

Proof: By monotonicity, Li(s,) increases to some ¢ < +oo. Also, Li(s,) < L(f) since s,, < f, hence
¢ < Ly(f). To show the other way inequality, let 0 < ¢ < f be any simple function and let 0 < ¢ < 1 be
any number. Write ¢t = oy x4, + ... + arxa, with disjoint Ays. Let B,, ; := A; N {s,, > ca;} 1 A, for each
j < k. Then s, > caixp, , + .- + capXs, , which shows that Li(s,,) > caoym(By1) + ... + ckapm(Bp k).
As s, T f,itis easy to see that B,, ; T A; and hence m(B,, ;) 1 m(A,). This shows that lim L, (s,,) > cLa(?).
Take ¢ — 1 and then supremum over all ¢ to get £ > Lo(f).

» Step-3 Let f be any measurable function. Let f; = max{f,0} and f- = max{—f,0}. Then
f+, f— are non-negative measurable functions and f = f; — f_. If it so happens that Ly(f) and

Ly(f-) (defined in step-2) are finite, then say that f is integrable and set L3(f) = La(f+) — La(f-).
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If only one of La(f+) and La(f-) is equal to +oo and the other is finite, then we do not say that
f is integrable, although it is convenient to define L3(f) as oo (depending on which of them is

infinite).

» Prove that integrable functions form a vector space and that L3 is linear and positive on this
vector space. Thatis (1) L3(f + g) = Ls(f) + Lz(g), (2) Lz(af) = aLs(f) for a € R, (3) L3(f) > 0.

Proofs: Again the second and third claims are obvious. To show the first one, observe that f + g can
be written as (f + ¢)+ — (f + ¢g)— and also as (f+ — f-) + (g+ — g—). Equating the two and rearranging,
we see that (f + g)+ + f- +g- = (f + g)— + f+ + g+. All these are non-negative measurable functions.
Using additivity of Lo, it follows that Lo((f 4+ ¢)+) + La(f-) + L2(9—) = La((f + 9)—) + L2(f+) + La(g+)-
Rearranging again, we see that Ls(f + g) = Ls(f) + Ls(g)-

» Henceforth, write [, f(z)dm(z) or [ fdm in short for L3(f). To integrate on subsets of R,

we write [, fdm to mean [, fxadm.

» If fis an integrable function and ¢ is another function such that m{f # g} = 0. Then g is
also measurable and integrable and | fdm = [ gdm. That is, Lebesgue integral is insensitive to
changes of values on sets of zero measure. In particular, if f > 0 and [ fdm = 0, then it is not
necessary that f = 0. We can only say that f = 0 a.e. (read as f is equal to zero almost everywhere
and meaning that m{f # 0} = 0).

» Since o0 are allowed values of measurable functions, adding functions can be problematic
if there exists points for which we get co — oo which is undefined. However, observe that if f is
an integrable function, then —oo < f < 400 a.e., hence by changing f on a set of zero measure,
we can make it finite-valued. When adding two integrable functions, the ambiguity of oo — oo can
occur at most on a set of zero measure, and if we ignore that set (or set the sum to be 0, say), then

the sum is well-defined. More about this a.e. business later.

» We summarize the main properties of the Lebesgue integral. It is linear and positive. Fur-
ther, for any integrable function | [ f dm| < [|f| dm (since the left side is the difference of two

non-negative numbers [ fi dmand [ f_ dm while the right side is the sum of the same numbers).

5. RIEMANN AND LEBESGUE INTEGRALS

» A function can fail to be integrable either because it is too big or because the the local struc-
ture of the function is bad. For example, if we go back to Riemann integral on [0, 1], the function
1/« fails to be integrable for the first reason, while the function xq (one on rationals, zero on irra-
tionals) fails to be integrable for the second reason (upper Riemann sums are always 1 and lower
Riemann sums are always 0). The first difficulty is not surprising, hence let us assume in this

section that all our functions are bounded function on [0, 1].

» (Vitali-Lebesgue): A bounded function on [0, 1] is Riemann integrable if and only if the set

of discontinuity points of f has zero Lebesgue measure.
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» From the construction of Lebesgue integral, it is clear that all bounded measurable functions

are integrable in the Lebesgue sense.

» Check that if f is continuous a.e., then it is measurable. Hence, Riemann integrable func-
tions form a subset of Lebesgue integrable functions. Further, where both are defined, they agree.

Therefore, Lebesgue integral is strictly better.

» Insome books one finds examples of functions that are not Lebesgue integrable but do have
sin
T

an improper Riemann integral (eg., *>*). But these are not absolutely integrable.

6. CONVERGENCE THEOREMS FOR LEBESGUE INTEGRAL

» To appreciate this section, go back and look at the clumsy theorems about exchanging limits

and integrals in Riemann integration. But never use them because now you have better theorems!

» Monotone convergence theorem Let 0 < f; < fo < ... be aincreasing sequence of measur-
able functions and let f,, T f (then f is measurable of course). Then [ f,dm 1 [ fdm.

Proof: That [ f,dm is increasing in n and bounded above by [ fdm is clear. To show the other way
inequality, it suffices to produce non-negative simple functions ¢,, that increase to f and such that ¢,, < f,,
(because then [ f,dm > [t,dm and the latter increases to | fdm by the preliminary version of MCT that
we proved earlier). To produce such a sequence of ¢,,s, pick non-negative simple functions s, j that increase
to f, as k — oo and define t;, = max{s1 k,...,Skx} It is clear that ¢;s increase. Further, for any n we see
that t;, > s, for n > k. Hence lim¢;, > f,,. As this holds for all n, we see that t;, 1 f.

» Fatou’s lemma Let f,, be non-negative measurable functions. Then [(liminf, o fn)dm <
liminf( [ f,dm).

Proof: Let g, = k1]?>fn fr and g = liminf f,,. Then g; T ¢ and since all are non-negative, by MCT it
follows that [ gdm = lim [ g,dm. But g, < f, and hence [ g,dm < [ f,dm which implies that | gdm <
liminf [ f,dm.

» Dominated convergence theorem Let f,, be measurable functions such that f,, — f point-
wise. If there is a integrable function ¢ that dominates f,s (i.e., | f,| < ¢ for all n), then [ f,dm —
[ fdm.1Infact [ |f, — f|dm — 0.

Proof: As —g < f,, < g, the functions g — f,, and ¢g + f, are non-negative. They converge to g — f and
g + f respectively. By Fatou’s lemma, it follows that [(g = f)dm < liminf [(g — f,)dm. As g is integrable
and dominates f,s (and hence dominates f), we see that f,,, f are also integrable. Hence the integrals can

be separated and we get

/gdm+/fdm§/gdm+liminf/fndm, /gdm—/fdm§/gdm—limsup/fndm.

Cancelling the [ gdm terms, we get limsup [ f,dm < [ fdm < liminf [ f,dm, from which the first result
follows.

Now apply the same result to | f,, — f| in place of f,, and 0 in place of f. As these functions are dominated
by 2g, it follows that [ |f,, — f|dm — 0.



7. ALMOST EVERYWHERE

» We saw that if f > 0 is a measurable function, then [ fdm = 0 if and only if f = 0 a.e.
(meaning m{f # 0} = 0). This is in contrast to integrals of continuous functions where the
conclusion would have been that f = 0 identically. As a consequence, if f is an integrable function
and we get g by changing f on a set of zero measure (i.e., m{g # f} = 0), then [ gdm is the same
as [ fdm.Infact, [ |f — g|dm = 0.

» The moral is that in measure theory the value of a function at a point is not so meaningful.
Functions have only some sort of a global meaning (in contrast to continuous functions, where
neighbouring values fix the value at a point). This is made more precise by defining a relationship
f~ygif f =gae. (ie, m{f # g} = 0). Check that this is indeed an equivalence relation. All

functions in one equivalence class are thought of as essentially the same function.

For later purposes, let us be more precise. Let M denote the set of all measurable functions on
R that take finite values except on a set of zero measure. That is,

M ={f:R+— R: fismeasurable and — co < f < +oc a.e.}.

Say that f,g € M are equivalent if f = g a.e. Check that this is an equivalence relation. Let M,
denote the collection of all equivalence classes. Check that M has a vector space structure under
addition and scalar multiplication. For example, to define the sum of two equivalence classes,
we take a representative function from each, sum the functions, and take the equivalence class
containing the sum, etc. In doing this, the problem of co — oo occurs at most on a set of zero
measure, and we may choose to define it any way, for example, let co — co = 0 (note that the

equivalence class of the resulting function does not change).

» Measure zero sets need not be small in other senses. For example, the Cantor set is uncount-

able but has zero measure.
8. p-NORMS

» Consider R?, a two dimensional real vector space. For p > 0, define ||z, := (J1|P + ]a:Q\P)%
for x = (z1,22) € R% Then ||az|, = |a|||z|, (homogeneity) and ||z||, > 0 with equality if and
only if x = 0 (positivity). What remains to make it a norm is the triangle inequality ||z + y/, <
|||, + ||ly|l, for all z,y € R%. This is true for 1 < p < oo but fails for 0 < p < 1. Thus, we have the

norms || - ||, for 1 < p < oo.

» It is an elementary exercise to show that ||z||, — max{|z1|,|z2|} as p — oo, for any = € R2.

This suggests defining ||z~ := max{|z1], |z2|}. Check that ||cdot||~ is also a norm.

» Of all the norms || - ||, 1 < p < oo on R?, the most special one is || - ||2. This is because this

norm comes from an inner product. More precisely, if we consider define (z,y) = z1y1 + x2y2,
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then this is an inner product and it induces the norm (z, z) = ||z||2. It is a good exercise to show

that || - ||, does not come from an inner product, for any p # 2.

» The dual space of R? is isomorphic to R? itself, by identifying the linear functional =
ax1 + bry with the vector (a,b). Given a norm || - || on R?, we define its dual norm as ||(a, b)||« :=
max{|az, + bxa| : ||z|| = 1}. It is not hard to show that the dual norm of || - ||, (for 1 < p < o0) is
|| - || where g is related to p by z% + % =1

» Given a vector space with a norm, it becomes a metric space with the distance between z

and y defined as ||z — y||.

» All this is to motivate the definition of L? spaces in terms of Lebesgue integral. The defi-
nition can also be made with Riemann integral, for example, consider the space of all Riemann
integrable functions on R. The problem with this space is that it is not complete. When we go to
Lebesgue integrable functions, we get a complete space. This may be taken as one of the purposes

of developing Lebesgue integration theory.

9. LEBESGUE SPACES

» Consider the space of all integrable functions on R. We have seen that it forms a vector
space. If we try to define a norm on this space by setting || f|| := [ |f|dm, then it does satisfy
homogeneity (||af]| = |a||| f]]) and triangle inequality (|| f + g|| < ||f|| + |lgl|)- It is also true that
|| £Il > 0, but it is not true that || f|| = 0 implies that f = 0. Hence it is not a norm.

» To overcome this problem, consider My, the collection of equivalence classes of measurable
functions defined above. Observe that if one function in an equivalence class is integrable, so are

all other functions, and their integrals are the same. Thus, we can define the space
L' = {[f] : f is integrable }

and a norm [|[f]|l; = [g|f|dm. All this is well-defined (i.e., independent of the representative

chosen) and the norm is a genuine norm.
» More generally, for any p > 0, we define the space
LP = {[f] : | f|? is integrable }
and write [|[f]]l, = (Jg |fIP dm)l/p. We also define
L = {[f] : | f| is bounded }

with ||[f]||cc defined as the essential supremum of |f|, defined as the infimum of all ¢ > 0 such
that m{|f| > ¢t} = 0. A key point about these norms is that if f ~ g, then f and g have the same
norm (in fact || f — g|| = 0). Hence, when we move to equivalence classes (which is the same as
quotienting by the subspace of functions that are zero a.e.), they define norms on the reduced

space.



» Theorem For 1 < p < oo, the space L” is a vector space and || - ||, is a norm on it. Further, L?

is complete in the metric induced by the norm.

» This theorem is a fundamental theorem in analysis. Note that we could have consider the
space of all Riemann integrable functions. That would be a vector space, and f — [ |f| would
have been a norm on it (some equivalence would have to be defined first). However, it would not
have been complete. The above theorem assures us that with Lebesgue integral “all the holes are

filled”, and there is no need for any further integral.

» The proof of the above theorem needs some work. Even the fact that || - ||, is a norm is not

obvious. It is easy to see in the three most important cases of p = 1, 2, cc.

» Proof of completeness of L': Given a Cauchy sequence in L', take representatives f, in
the equivalence classes. The Cauchy property implies that || f,, — fi|[1 — 0 as m,n — co. Hence
we may find n1 < ng < n3z < ...such that [|f, — fin]1 < 2k if n,m > ng. We shall show that
fn,; converges a.e. to a function f and then argue that this convergence is also in L' metric (i.e.,
| fur — flli — 0as k — oo). Then it follows that f,, converges to f in L! metric (the reason is that
if a Cauchy sequence in a metric space has a convergent subsequence, then the whole sequence
converges). Then [f,,] — [f] in L!, showing the completeness.

To show that the sequence h; = f,; converges, write hy, = hy + (ha — h1) + ... + (hx — hp_1).
The limit, if it exists, should be the corresponding infinite series, but we should first make sure

that the series makes sense. Hence, we define
9= hal+ Y iy — bl = [ha| + lim Y fgsr — b,
k=1 k=1
This is well-defined, although the value could be +oc at some z. However, by MCT, [ g dm =
[1haldm + 3222, [ |hgy1 — hi|dm, which is finite since the kth terms is at most 2% (by choice of
ng). Thus, g is integrable, and hence g < oo a.e. Therefore, we may define

fla) = hi(x) + 302 (hey1(2) — he(z))  if g(z) < o0 |
0 if g(z) = oo.

When g(z) < oo, the series converges absolutely and hence f(z) has a well-defined finite value.
But of course, this means that 2, — f a.e. (since the partial sums are just hy). We claim that this

convergence is also in L'. Indeed,

/|f—hmdm:/| D (hpgr — )| dm < 2k =27
k=m k=m

Thus ||f — hm|[1 — 0, completing the proof.
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